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Abstract—

Graphics processing units (GPUs) are becoming default ac-
celerators in many domains such as high-performance com-
puting (HPC), deep learning, and virtual/augmented reality.
Recently, GPUs have also shown significant speedups for a variety
of security-sensitive applications such as encryptions. These
speedups have largely benefited from the high memory bandwidth
and compute throughput of GPUs. One of the key features to
optimize the memory bandwidth consumption in GPUs is intra-
warp memory access coalescing, which merges memory requests
originating from different threads of a single warp into as few
cache lines as possible. However, this coalescing feature is also
shown to make the GPUs prone to the correlation timing attacks
as it exposes the relationship between the execution time and the
number of coalesced accesses. Consequently, an attacker is able
to correctly reveal an AES private key via repeatedly gathering
encrypted data and execution time on a GPU.

In this work, we propose a series of defense mechanisms to
alleviate such timing attacks by carefully trading off performance
for improved security. Specifically, we propose to randomize the
coalescing logic such that the attacker finds it hard to guess the
correct number of coalesced accesses generated. To this end, we
propose to randomize: a) the granularity (called as subwarp)
at which warp threads are grouped together for coalescing,
and b) the threads selected by each subwarp for coalescing.
Such randomization techniques result in three mechanisms: fixed-
sized subwarp (FSS), random-sized subwarp (RSS), and random-
threaded subwarp (RTS). We find that the combination of these
security mechanisms offers 24- to 961-times improvement in the
security against the correlation timing attacks with 5 to 28%
performance degradation.

Index Terms—GPUs, Hardware Security, Coalescing

I. INTRODUCTION

Graphics Processing Units (GPUs) are becoming an in-

evitable part of every computing system because of their ability

to provide fast and energy-efficient computation. Given such

ability, GPUs are also now being used to accelerate a variety of

cryptographic algorithms. For example, the popular Advanced

Encryption Standard (AES) algorithm [21] is known to achieve

significant speedups on GPUs compared to CPUs [6], [9],

[17], [23] as the AES algorithm exposes abundant thread-

level parallelism to leverage high bandwidth and compute

throughput of GPUs. With such increasing popularity of GPUs

to accelerate security-sensitive applications, it is imperative to

keep GPUs secure against a variety of side-channel attacks

and other security vulnerabilities.

In this paper, we specifically focus on the correlation-based

timing attacks on GPUs. In general, a correlation-based timing

attack exploits the relationship between the secret data and its

impact on the processing time of an application: the attacker

sends a large number of data samples to calculate the correlation

between the actual processing time and the secret data. Among

the guessed values for the secret data, the one leading to the

highest correlation is the actual secret data. Notably, the recent

work from Jiang et al. [10] demonstrated a correlation-based

timing attack on a remote GPU server. They exploited two

observations. First, the last round private key byte directly

affects the number of coalesced memory accesses in the

last round and can be calculated deterministically given the

encrypted text. Second, the number of coalesced accesses in

the last round is correlated with the total execution time. With

these two observations, an attacker can recover each key byte

by picking the value that best correlates with the recorded total

execution time from the remote GPU server1.

The goal of this paper is to design low-overhead defense

mechanisms to thwart timing attacks that exploit the memory

coalescing in GPUs. To this end, a straightforward solution is

to eliminate the correlation between the number of coalesced

accesses and the total execution time by disabling the memory

access coalescing mechanism completely. However, since the

memory access coalescing is one of the key features in

GPUs that optimizes the memory bandwidth consumption,

the disabling of coalescing will incur a heavy performance

due to increase in the number of memory accesses [10], [15],

[16], [28]. To provide a better trade-off between security and

performance, we propose RCoal, a series of three tunable

coalescing mechanisms to guard against correlation-based

timing attacks.

The first mechanism focuses on tuning the granularity at

which threads are coalesced together, thereby increasing the

number of coalesced accesses at a finer granularity. We call this

technique as fixed-sized subwarp (FSS) defense mechanism,

where the size of subwarp determines the coalescing granularity.

FSS mechanism helps to reduce the correlation between the

coalesced accesses and total execution time by reducing the

variance in the coalesced accesses. Building on the first

mechanism, the second mechanism focuses on randomly

changing the size of each subwarp. We call this technique

as random-sized subwarp (RSS) defense mechanism where

the size of each subwarp affects the attacker’s ability to

correctly determine the number of coalesced accesses. The

1Section II presents more details on the attack.
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final mechanism focuses on randomly changing the thread

elements of each subwarp. We call this technique as random-

threaded subwarp (RTS) defense mechanism as the coalescer

picks random thread elements to form a subwarp. RTS can be

applied to both FSS and RSS to further hinder the attacker’s

ability to determine the number of coalesced accesses correctly.

To the best of our knowledge, this is the first work to thwart

timing attacks in GPUs via randomized coalescing techniques.

In summary, this paper makes the following contributions:

• We generalize the correlation-based timing attack on GPUs

and show that the regularity and determinism in memory access

coalescing is a major security vulnerability.

• We propose three novel coalescing mechanisms to mitigate

the timing attacks arising from memory access coalescing.

These mechanisms revolve around carefully changing the size,

number, and thread elements of a subwarp to reduce the

correlation between the number of coalesced accesses and

the total execution time.

• We present a detailed information-theoretical analysis to

show that our randomized coalescing mechanisms can improve

the GPU security by 24 to 961 times. Our extensive simulation

results confirm the theoretical results and demonstrate that the

improved security can be achieved at a performance loss of 5

to 28%.

• We propose a new metric called RCoal Score that

provides an opportunity for hardware engineers to tune the

security and performance trade-off as per their requirements.

We discuss two such security-performance trade-off designs and

conclude that RSS and RTS mechanisms provide significant

advantages towards performance and security, respectively.

II. BACKGROUND

In this section, we briefly introduce a) the baseline GPU

architecture and the process of memory access coalescing, b)

the anatomy of AES encryption, and c) the baseline timing

attack assumed in this paper.

A. Baseline GPU Architecture

Overview. Figure 1 shows a high-level schematic of the GPU

architecture. A typical GPU consists of multiple cores, called

as streaming multiprocessors (SMs) in NVIDIA terminology.

SM

Warp Scheduler

PE PE.  .  .

Global Memory

Thread 
# 1

Thread 
# 32

WARP

Intra-Warp Coalescing Unit

.  .  .

WARP Pool

Thread 
# 2

PE

LD/ST Unit

Fig. 1: Overview of Baseline GPU
Architecture.

Each SM takes advantage of

the Single Instruction, Mul-

tiple Threads (SIMT) pro-

gramming paradigm [14] to

schedule multiple threads

on its processing elements

(PEs). These threads are

scheduled at the granularity

of a warp, which is essen-

tially a collection of (usu-

ally 32) individual threads

that execute a single instruc-

tion on the PEs in a lock

step manner. Each SM can

execute multiple warps con-

currently in a multiplexed manner to hide the long global

memory latencies and improve the utilization of core resources

(e.g., register file, scratchpad memory). All SMs are connected

to global memory partitions via an on-chip interconnect. In

this paper, we evaluate the proposed techniques on a GPU

architecture simulated using a cycle accurate GPU simulator –

GPGPU-Sim [1]. More details on the simulated architecture

are given in Table I.

TABLE I: Key configuration parameters of the simulated GPU
configuration.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)

Resources / Core 32KB shared memory, 32KB register file, 15 SMs
32 threads/warp, one subwarp per coalescing unit

Features immediate post dominator based branch divergence handling

Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling
16 DRAM-banks, 4 bank-groups/MC, 924 MHz
memory clock Global linear address space is
interleaved among partitions in chunks of 256 bytes [4]
Hynix GDDR5 Timing [7], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6

Interconnect 1 crossbar/direction,
1400MHz interconnect clock, islip VC and switch allocators

Memory Access Coalescing. One of the effective ways to im-

prove the collective performance of the concurrently executing

threads on GPUs is to optimize the global memory bandwidth.

To this end, several techniques such as intra-warp memory

access coalescing, inter- and intra-warp request merging via

miss status handling registers (MSHRs), sectoring [28], and

L1/L2 caching have been proposed for GPUs. In this work,

we focus on intra-warp memory access coalescing technique,

which merges multiple memory requests from different threads

of the same warp in to as few cache line sized coalesced

memory accesses as possible.
The coalescing unit (part of LD/ST unit of the SM) performs

the agglomeration of memory requests from the threads in

a warp at a subwarp level, where the number of subwarps

is an architectural parameter. If the threads of a particular

subwarp request nearby data within a contiguous block of

the memory, their requests are coalesced together to avoid

redundant accesses. Therefore, if the memory access size,

subwarp size, and thread-data pattern (e.g., if/when thread

to table index mapping is known) are known, the number of

memory accesses can be calculated accurately. As per CUDA

programming guide [24], the scalar threads from the same

warp can be coalesced together (subwarp size of 1), at a half-

warp basis (subwarp size of 2) or at a quarter-warp basis

(subwarp size of 4). The subwarp size is decided based on the

size of the memory request from each thread. The generated

coalesced accesses are serviced at the rate that matches with the

underlying cache/memory bandwidth. To correctly simulate the

number of coalesced accesses as that of in the baseline attack

model (explained later in the section), we assume subwarp size

to be 1 in our baseline architecture.
To understand the effect of subwarps on coalescing, consider

an example with warp comprising of four threads under two

different cases employing the number of subwarps (num-

subwarp) as 1 and 2, respectively, as shown in Figure 2. We

assume that four threads generate four accesses and if perfectly

coalesced will generate one coalesced access (memory block).

When all the threads are considered together for coalescing

(i.e., Case 1: num-subwarp is 1), only three coalesced accesses

are generated as the requests from the second and third thread
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Coalescing Unit

0x00 0x01 0x02 0x03

Three Coalesced Accesses

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

Coalescing Unit

0x00 0x01 0x02 0x03

Four Coalesced Accesses

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

0x04 0x05 0x06 0x07

CASE 1: number of subwarps = 1 CASE 2: number of subwarps = 2

From
Subwarp # 0

From
Subwarp # 1

0x00
tid = 0

0x04
tid = 1

0x07
tid = 2

0x09
tid = 3

0x00
tid = 0

0x04
tid = 1

0x07
tid = 2

0x09
tid = 3

Subwarp # 0 Subwarp # 1

Fig. 2: Effect of subwarps on memory coalescing.

are coalesced into one request. When num-subwarp is 2 (Case

2), the coalescing is performed independently for each subwarp.

Consequently, two coalesced accesses per subwarp (in total

four) are generated.

B. AES Encryption

Basics. The Advanced Encryption Standard (AES) [21] is

a widely used symmetric-key algorithm. The AES standard

specifies 128, 192, and 256 bits as the standard key lengths.

Without losing generality, we focus on AES-128, which

employs a 128-bit key to encrypt the plaintext. AES-128

algorithm consists of 10 rounds each with its own round

key of 16 bytes, which is generated from the encryption key.

In each round, subBytes() transformation (details of other

transformation can be found in prior works on AES [6],

[9], [17], [23]) performs a table look-up operation on the

substitution (S-box) table. In the last round, a table look-up

operation is performed on the T4 S-box table followed by

bitwise XOR operation with the last round key. This operation

is expressed by Equation 1 for the jth byte of output ciphertext

(cj) and ith input state of the last round (ti, table lookup

index) [6], [10]. T4 [ ] represents the last round S-box table

look-up operation whose result is XORed with jth byte of the

last round key (kj).

cj = T4 [ti]⊕ kj (1)

GPU Implementation of AES Encryption. A CUDA imple-

mentation of AES divides the plaintext across multiple parallel

threads to improve GPU throughput. Each thread performs

encryption on one line (block) of the plaintext. Therefore, each

warp consists of 32 threads performing 32 different encryptions.

The line to thread mapping is sequential and deterministic in

the baseline implementation. If the size of the plaintext exceeds

32 lines, then it is divided sequentially among several warps.

For example, a plaintext with 1024 lines will employ 32 warps

each executing 32 lines of the plaintext. Figure 3 shows the

encryption process for the last round on 32 threads of a single

warp. Each thread performs encryption of a byte (pj) of the

input text, where j varies from 1 to 16. All threads of the warp

work in a lock-step manner and perform the same table look

up operation (T4 [ti]) with different values of ti. The accesses

are coalesced together by the coalescing unit, and when the

replies come back, all threads use the same last round key (kj)

to generate one column of the ciphertext cj as per Equation 2.

In Equation 2, tid is the thread index.
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Fig. 3: Last round execution of AES-128 algorithm. The ti in
T4[ti] represents the index of the table lookup operation. kj and
cj represent the jth byte of the last round key and ciphertext,
respectively. tid is the thread id within a warp.

ctidj = T4

[
ttidi

]
⊕ kj (2)

C. Baseline Timing Attack

In this paper, we use the correlation timing attack proposed

by Jiang et al. [10] as the baseline attack. The attack model

assumes that the attacker sends a large number of plaintexts

to a remote GPU AES encryption server. The attacker collects

the ciphertexts and records the total execution time for each

plaintext. The goal is to correctly find all 16 last round key

bytes by exploiting a key observation that there is a high

correlation between the number of memory accesses and the

total execution time on GPU. The baseline attack targets the

last round key since it is the most vulnerable round and key

expansion is invertible (i.e., it is possible to derive the original

private key from any round key) [22]. The observation is that

each table lookup index in the last round can be computed

from a byte of the last round key (kj) and the corresponding

byte of ciphertext (cj), independent of other ciphertext bytes

(as shown in Equation 3). Thus, the attacker is able to observe

the security leakage separately at per-byte level.

ti = T−1
4 [cj ⊕ kj ] (3)

Figure 4 shows the attack process for recovering the jth last

round key byte (kj). The attack process has two major steps.

The first step involves a guessed key value kmj where m ranges

from 0 to 255. According to Equation 3, the table lookup index

of each thread (ttid,mi ) can be computed, as shown in Figure 4a.

Once the indices are obtained for all threads, the attacker can

calculate the expected number of coalesced accesses (Am,n
j ) for

the nth plaintext with the known and deterministic behavior of

coalescing (in our configuration, 16 consecutive table elements

are mapped sequentially to the same memory block). This

particular attack assumes num-subwarp to be 1 (i.e., all threads

in the warp are processed together for coalescing). This first

step is repeated for all possible 256 key byte guesses for the

jth byte and for N plaintext samples. As a result, a memory

access matrix is generated as shown in Figure 4b. Each row

of the matrix corresponds to the number of guessed memory

accesses for a particular key guess (m) across N plaintext

samples (Am
j ).

The second step involves calculating the correlation
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and RSS+RTS with 4 threads and 2 subwarps, respectively.

In the case of FSS+RTS, the size of both subwarps is 2 but

threads are not mapped in order. For example, subwarp 0 (sid
= 0) has two threads 0 and 2 (tid = 0 and 2) instead of threads

0 and 1. Therefore, four coalesced accesses are generated. In

the case of RSS+RTS, sizes of the subwarp are different: 1

and 3. Consequently, the mapping of one of threads is changed

(i.e., tid = 0 is now mapped to sid = 1) leading to total three

coalesced accesses. In summary, we find that RSS can help

in reducing the number of coalesced accesses while providing

randomness (along with RTS) for better security.

D. Implementation Details

In order to implement the proposed subwarp based defense

mechanisms, we modify the coalescing unit to allow flexibil-

ity in processing of threads for memory access coalescing.

Figure 11 shows a schematic of the memory coalescing unit

(MCU) of GPU (the additional hardware logic for security is

shaded). As described by Leng et al. [16], each MCU contains

a multi-entry pending request table (PRT). Each entry in the

PRT table stores the thread index (tid), the base and offset

addresses of the memory requests from the threads, and their

sizes. An entry is logged when a memory request is issued from

a thread. We add an additional subwarp-id (sid) field to identify

which threads should be coalesced together. The subwarp-id

and thread-id mapping is set by the hardware logic at the

beginning of the application execution and does not change

during the execution. The logic is dependent on the adopted

defense mechanism. In case of FSS and RSS, the bits are set

based on the chosen value of num-subwarp and the sizing

mechanism. The subwarp-ids are allotted in order, that is, first

group of threads will belong to the first subwarp with sid set to

0 and so on. For RTS, the available sids are allotted randomly

to the threads in a warp. The additional hardware overhead of

our mechanisms is related to the addition of subwarp-id field to

each PRT entry. The number of concurrent warp scheduler per

SM in our case is two. Therefore, for each SM, the nominal

overhead would be 32 × 2 × 5 bits (to represent 32 maximum

possible values of sid) = 320 bits.
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Fig. 11: Modified Coalescing Unit to realize FSS, RSS, and RTS
defense mechanisms. The additional hardware required is the
field to store subwarp-id (sid) for each thread.

E. Corresponding Attacks

Similar to the FSS attack, which generalized our baseline

attack, we assumed that the attacker is aware of the details

of our defense mechanisms implemented on GPU. Therefore,

for each defense mechanism, we modified Algorithm 1 to

mimic the respective defense mechanism on the attacker’s

side. For example, against the RSS+RTS enabled GPU, the

corresponding attack algorithm simulates RSS-like subwarp

size distribution along with random allocation of threads to

subwarps within a warp as in RTS. We assume corresponding

attacks in the rest of the paper.

V. THEORETICAL SECURITY ANALYSIS

A. Analytical Model

To measure the security strength of the defense mechanisms

introduced in Section IV, we inspect a natural metric of the

(expected) number of samples needed to successfully launch

the correlation timing attack.
To estimate that, we use T to represent the measurement

vector, a vector of the encryption times for a sample set using

the actual key. For the jth last round key byte kj , we use

Ûkm
j

to represent the estimation vector of kmj , a vector of the

coalesced accesses for the same sample set if 0 ≤ m ≤ 255
were the actual value of kj . The correlation attack essentially

tries to find the value m̂ that maximizes the correlation with

the measure vector:

m̂ = argmax
m

(ρ(T, Ûkm
j
))

We follow the derivation in [20], [31] to estimate the number

of needed samples, S, for a successful attack as follows:

S = 3 + 8×
( Zα

ln
( 1+ρ(T,Û)

1−ρ(T,Û)

)
)2

≈
2× Z2

α

ρ2(T, Û)
(4)

where Û is a short hand for Ûkm̂
j

, ρ represents the correlation

and Zα is the quantile of the standard normal distribution for

α, the desired success rate of an attack. With α = 0.99, 2×Z2
α

is approximately 11. Zα is proportional to α. So the smaller

α is, the smaller S is (i.e., fewer samples are needed).

To estimate ρ2(T, Û), we observe that (as shown in Figure 5)

the total execution time of AES is proportional to the number

of last-round coalesced accesses. Hence, we can draw on the

latter in the analytical model2. Hence, let us assume that U
is the actual vector of number of coalesced accesses from the

lookup of table T4 with respect to the key byte kj (Equation 1

in Section II-B). We can rewrite Equation 4 as

S ∝
1

ρ2(U, Û)
=

(µ(U × Û)− µ(U)µ(Û)

σ(U)σ(Û)

)−2

=
(µ(U × Û)− µ2(U)

σ2(U)

)−2

(5)

where µ and σ, as standard, respectively represent the mean

and standard deviation of a random variable. The last equation

is true since U and Û are identically distributed.

2We note that using the number of coalesced accesses rather than the
execution time assure a lower bound on the number of samples since the later
is noisier than the former.

7



B. Analysis of Defense Mechanisms

To make the analysis general, we assume there are in total

M subwarps and N threads. Moreover, we assume that each

lookup table may map to R memory blocks. As discussed in

Section II, our configuration has N = 32 and R = 16.

We first define three useful definitions.

Definition 1: Given m threads, if each thread accesses one

of n memory blocks in a uniform way, then the number of

coalesced accesses, Nm,n, obeys the following distribution:

P (Nm,n = i) =
1

nN

n!

(n− i)!

{
m

i

}

where
{
m
i

}
denotes the Stirling number of the second kind.

Here,
{
m
i

}
represents the ways of partitioning m threads into i

non-empty subsets; n!
(n−i)! , i-permutations of n, represents the

ways of forming i non-empty subsets from n memory blocks.

It is infeasible to compute Equation (5) by enumerating all

possible mappings from threads to memory blocks since there

are in total RN possibilities (1632 = 2128 when N = 32 and

R = 16). However, we note that with RTS, the number of

coalesced accesses only depends on the frequency of the R
memory blocks, which is defined as follows.

Definition 2: For R memory blocks and n threads, we define

a frequency set F as

{(f1, . . . , fR) | f1 + · · ·+ fR = n}

where fi ∈ F represents the frequency of accessing the i-th
memory block among the n threads.

Given a frequency vector F ∈ F , we note that the

“contribution” of each memory block to the number of last-

round coalesced accesses U is independent. Hence,

Definition 3: Given a frequency sequence F ∈ F and a

vector C = {c1, · · · , cm} that specifies the capacity of each

subwarp, if each thread uniformly accesses one of the |F |
memory blocks, then the number of coalesced accesses, written

as MF,C , satisfies

µ(MF,C) =
∑

fi∈F

∑

cj∈C

(1− C
S−cj
fi

/CS
fi)

where Cm
n denotes the binomial coefficient and S =∑

1≤j≤n cj .

Here, C
S−cj
fi

/CS
fi

is the probability that the j-th subwarp is

empty and µ(MF,R) is the sum of the expectations for each

subwarp and each memory block.

Next, we derive the (normalized) samples needed for a

successful attack for each defense mechanism. We skip the

theoretical analysis for the RSS mechanism since it requires

enumerating all possible mappings from threads to memory

blocks rather than the frequency set, making it infeasible for

the calculation. Instead, we provide the empirical results for

the RSS mechanism in Section VI.
1) FSS: With sufficiently random plaintexts, the probability

that one thread accesses one of the R memory blocks is

1/R. Hence, for each subwarp with size N/M , the number

of coalesced accesses is NN/M,R. Since each subwarp is

independent, we have

µ(U) = M × µ(NN/M,R) σ(U) = M × σ(NN/M,R)

TABLE II: Security analysis results with N = 32 and R = 16,
where N is the number of threads and R is the number of
memory blocks. Here, M is the number of subwarps and S is
the number of samples normalized to FSS with M = 1 case.

ρ S (normalized)

M FSS FSS+RTS RSS+RTS FSS FSS+RTS RSS+RTS

1 1.00 1.00 1.00 1 1 1

2 1.00 0.41 0.20 1 6 25

4 1.00 0.20 0.15 1 24 42

8 1.00 0.09 0.11 1 115 78

16 1.00 0.03 0.05 1 961 349

32 0.00 0.00 0.00 ∞ ∞ ∞

For µU×Û , we note that given any sequence of memory

blocks being accessed by threads, U is identical to Û . Hence,

µ(U × Û) = µ(U2) = σ2(U) + µ2(U).
2) FSS+RTS: The random permutation does not affect µ(U)

and σ(U). For µ(U × Û), (U |F ) and (Û |F ) are independent

and identical for any F ∈ F . Hence, the term is equivalent to
∑

F∈F

P (F )µ2(U |F ) (6)

Here, P (F ) is the probability of seeing the frequency vector

F . Among all RN combinations of N memory accesses,

Cf1
N Cf2

N−f1
· · ·CfR

N−
∑

1≤j≤R−1
fj

= (N)!
Πfi∈Ffi!

match F . Hence,

we have P (F ) = (N)!
Πfi∈Ffi!

× 1
RN . Moreover, µ(U |F ) is the

same as µ(MF,{N/M,··· ,N/M}) since each subwarp has size

N/M .

3) RSS+RTS: We use Ui to represent the coalesced accesses

of the i-th subwarp. With RSS, Ui and Uj are not independent.

Hence, we cannot compute σ(U) as for FSS.

However, given the size of each subwarp, Ui and Uj

are independent for any 1 ≤ i, j ≤ M . We use W =
{(w1, · · · , wM ) |

∑
1≤i≤M wi = N ∧ ∀1≤i≤M . wi 6= 0} to

denote all possible non-empty sizes of subwarps under RSS.

Due to uniformity, P (W ) = 1
|W| for any W ∈ W .

For µ(U), we have µ(U) =
∑

W∈W P (W )µ(U |W ) =∑
W∈W P (W )

∑
wi∈W µ(Ui|wi) where µ(Ui|wi) is the same

as µ(Nwi,R). For σ(U), we know σ2(U) = µ(U2) − µ2(U)
and

µ(U2) =
∑

W∈W

P (W )µ(U2|W )

=
∑

W∈W

P (W )
( ∑

1≤i≤M

σ2(Ui|wi) + µ2(U |W )
)

Here, σ2(Ui|wi) = µ(U2
i |wi) − µ2(Ui|wi) and µ(U |W ) =∑

1≤i≤M µ(Ui|wi) due to independence. We note that (Ui|wi)

is Nwi,R and (U2
i |wi) is (Nwi,R)

2
. So these terms can be

computed via Definition 1.

For µ(U × Û), we can reuse Equation 6 since with RTS,

(U |F ) and (Û |F ) are independent and identical. Similar to

FSS+RTS, µ(U |F ) =
∑

W∈W P (W )µ(MF,W ) in this case.

C. Results

We use a Python script to compute the correlation and

normalized sample size for a successful attack. The results are

summarized in Table II.

As expected, when M = 32, we have ρ = 0 and S = ∞
because in this case, each thread is mapped to one subwarp
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are mechanisms based on randomization [19], [32], [33], [34].

Most of these works randomize the memory-to-cache mapping

or the cache replacement policy, while our work proposes to

randomize the coalescing behavior.

Coalescing and Bandwidth Saving Techniques in GPUs.

Kloosterman et al. [15] proposed warp-pool, an enhanced inter-

warp sharing mechanism to reduce global memory accesses.

Rhu et al. [28] proposed cache sectoring mechanism to reduce

unnecessary data fetches from global memory. A series of warp

scheduling techniques [12], [13], [29], [30] have been proposed

to reduce cache misses and improve memory bandwidth

utilization. None of these works focused on hardware security

issues, as we do in this paper.

IX. CONCLUSIONS

Our findings confirm that the deterministic nature of the

coalescing logic is a major cause of security vulnerability in

GPUs. To address this vulnerability, we propose a series of

defense mechanisms that allow the coalescing logic to randomly

change the number of coalesced accesses. Specifically, we

propose to randomize: a) the granularity at which intra-warp

coalescing is performed in the baseline architecture, and b)

allocation of the thread elements per subwarp. Our theoretical

and empirical results show that our randomized coalescing

defense mechanisms significantly improve the GPU security at

a modest performance loss.
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